Benders decomposition and an IP-based heuristic for selecting IMRT treatment beam angles
نویسندگان
چکیده
In this paper, two Benders decomposition algorithms and a novel two-stage integer programming-based heuristic are presented to optimize the beam angle and fluence map in Intensity Modulated Radiation Therapy (IMRT) planning. Benders decomposition is first implemented in the traditional manner by iteratively solving the restricted master problem and then identifying and adding the violated Benders cuts. We also implemented Benders decomposition using the “lazy constraint” feature included in CPLEX. In contrast, the two-stage heuristic first seeks to find a good solution by iteratively eliminating the least used angles in the linear programming relaxation solution until the size of the formulation is manageable. In the second stage of the heuristic, the solution is improved by applying local branching. The various methods were tested on real patient data to evaluate their effectiveness and runtime characteristics. The results indicated that implementing Benders using the lazy constraint usually led to better feasible solutions than the traditional approach. Moreover, the LP rounding heuristic was seen to generate high-quality solutions within a short amount of time, with further improvement obtained with the local branching search. © 2016 Elsevier B.V. All rights reserved.
منابع مشابه
A new mathematical model for intensity matrix decomposition using multileaf collimator
Cancer is one of the major causes of death all over the globe and radiotherapy is considered one of its most effective treatment methods. Designing a radiotherapy treatment plan was done entirely manually in the past. RecentlyIntensity Modulated Radiation Therapy (IMRT) was introduced as a new technology with advanced medical equipmentin the recent years. IMRT provides the opportunity to delive...
متن کاملIterative Approach for Automatic Beam Angle Selection in Intensity Modulated Radiation Therapy Planning
Introduction: Beam-angle optimization (BAO) is a computationally intensive problem for a number of reasons. First, the search space of the solutions is huge, requiring enumeration of all possible beam orientation combinations. For example, when choosing 4 angles out of 36 candidate beam angles, C36 = 58905 possible combinations exist. Second, any change in a beam 4 config...
متن کاملSimplifying intensity‐modulated radiotherapy plans with fewer beam angles for the treatment of oropharyngeal carcinoma
The first aim of the present study was to investigate the feasibility of using fewer beam angles to improve delivery efficiency for the treatment of oropharyngeal cancer (OPC) with inverse-planned intensity-modulated radiation therapy (IP-IMRT). A secondary aim was to evaluate whether the simplified IP-IMRT plans could reduce the indirect radiation dose. The treatment plans for 5 consecutive OP...
متن کاملSelection of beam orientations in intensity-modulated radiation therapy using single-beam indices and integer programming.
While the process of IMRT planning involves optimization of the dose distribution, the procedure for selecting the beam inputs for this process continues to be largely trial-and-error. We have developed an integer programming (IP) optimization method to optimize beam orientation using mean organ-at-risk (MOD) data from single-beam plans. Two test cases were selected in which one organ-at-risk (...
متن کاملCombinatorial Benders cuts for decomposing IMRT fluence maps using rectangular apertures
We consider the problem of decomposing Intensity Modulated Radiation Therapy (IMRT) fluence maps using rectangular apertures. A fluence map can be represented as an integer matrix, which denotes the intensity profile to be delivered to a patient through a given beam angle. We consider IMRT treatment machinery that can form rectangular apertures using conventional jaws, and hence, do not need so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 251 شماره
صفحات -
تاریخ انتشار 2016